

 34

Chapter 4
Experiments

In this chapter, we measure and analyze the data from the perspective of

comparing essential framework, aggregative framework and selectivity content

framework.

4.1 Environment

WebStone project [37] is used as our benchmark. It was developed by SGI,

which gave users almost complete control over the workload characteristics, including

the request sizes and mixtures. WebStone is a configurable client-server benchmark

for web servers, which uses workload parameters and client processes to generate

HTTPS traffic that allows a server to be stressed in a number of different ways. The

process of load generation in WebStone is performed by successively requesting

pages and files from the server as fast as it can process the requests. A new request is

sent out to the server just after a client receives the answer of the previous request.

The experimental configuration comprises three machines listed in Table 2.

These machines are interconnected directly with a cross over Ethernet line. The

typical cipher suite SSL_RSA_WITH_RC4_MD5 is chosen to request both from

clients and from proxy. We experimentally classify target files into range for 1kb, 2kb,

4kb, 8kb, 16kb, 32kb, 64kb, 128kb, 256kb, and 512kb in sizes. The number of

simultaneous clients is given from 20 to 100 incremented by 20. The testing duration

is set equally to 10 minutes, and the results presented are the average values of three

rounds performed for each configuration and workload. Notably, program

 35

performance obviously depends on hardware capacity. It is considerable that

performance can be improved markedly by using more high-end processors.

Table 2. Equipments of Testbed.

WebStone SSL Proxy Server Web Server

PIII-1G
640MB SDRAM
Intel Pro 100S
RH 9.0

P4-2G
512MB DDR
Intel Pro 100VE / Intel Pro 100+
RH 9.0

P-M 1.3G
256MB DDR
Intel Pro 100VE
RH 9.0
Appache 2.0.53

First of all, the most important metric is connection establishing rate. It derived

from total established connections, divided by total test time. The other two metrics

are throughput and response time. The former is total amount of bytes (body + header)

transferred throughout the test, divided by the total test time, measured in bps and the

latter represents the time that last byte of a response, i.e. the average response time to

complete a request, from the client’s standpoint.

The first result from the perspective of comparing essential framework and

aggregative framework is measured and analyzed to realize the improvement degree

by using resume handshake from these sets of the experiments. All detail

measurement results are also given for obtained from all the counters in our

experiments running on several different setups.

The second experiment is conducted with measuring the selectivity content

framework. Therefore, all configurations are the same parameters used in testing

except a difference cryptography suite is used. We evaluate by requesting GIF objects,

and on the other side, SSL proxy server uses the specific cipher suite

 36

SSL_RSA_WITH_NULL_MD5. The cipher suite is lacked of symmetric

cryptographic RC4 compared with SSL_RSA_WITH_RC4_MD5. The experiments

are evaluated according to different sizes, the results are derived as Table 3 for

connection rate, Table 4 for throughput, and Table 5 for response time respectively.

4.2 Performance Evaluation

The first result of our experimental metric lies in connection establishing rate.

The statistics for connection rate in different workloads based on essential framework

are shown in the Table 3(a). On the other hand, the statistics based on aggregative

framework and selectivity framework are shown in the Table 3(b) and Table 3(c)

respectively. The performance differences mainly caused by the effect of different file

sizes rather than the number of simultaneous clients. The improvement ratio is

obviously observed, as illustrated from a comparison of Table 3(a), Table 3(b) with

Table 3(c), it changes whenever the file size changes.

Table 3(a). Connection rate of essential framework

Essential Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 90.50 87.05 86.64 82.75 80.70 71.46 57.63 37.20 20.08

40 90.53 87.14 86.69 82.86 80.78 71.66 57.61 37.15 20.04

60 90.59 87.15 86.76 82.99 80.86 71.65 57.67 37.12 19.94

80 90.99 87.52 87.02 83.02 80.88 71.69 57.69 37.16 19.89

100 90.96 87.49 87.01 83.11 80.91 71.69 57.64 37.09 19.83

 37

Table 3(b). Connection rate of aggregative framework

Table 3(c). Connection rate of selectivity content framework

Selectivity Content Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 239.28 224.36 213.82 190.32 162.68 121.05 81.30 43.42 22.15

40 239.69 224.96 213.93 190.35 163.69 122.04 81.34 43.37 22.09

60 240.18 229.45 215.70 193.52 164.32 124.06 82.20 44.15 21.82

80 241.40 231.18 217.73 196.91 164.77 124.85 82.26 44.25 22.03

100 245.12 235.26 219.88 198.08 165.73 124.77 82.38 43.93 21.60

Regard to the aggregative framework compared with essential framework. Given

an example for 100 clients, Figure 16 summarizes that when the size of target file is

small, the improvement ratio of connection rate is relative larger. The reason is

explained as following: Suppose a typical environment, the total time of a request is

equal to T. Let t1 refer to the time of establishing connection and t2 refer to the time of

content transmission. Hence,

Aggregative Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 238.85 220.92 208.40 181.35 151.75 111.10 71.63 42.95 21.75

40 239.12 222.63 209.46 183.43 152.84 111.13 72.64 42.91 21.69

60 239.27 227.62 211.58 187.88 154.15 112.30 73.35 43.00 21.88

80 239.95 228.79 214.75 187.96 154.96 112.09 73.33 43.26 21.53

100 241.82 229.57 217.72 188.93 155.80 112.97 73.33 43.50 21.52

 38

T = t1 + t2

The time of establishing connection is equal to t1’ while using resume handshake

mechanism (i.e. t1’ < t1). Therefore, a total time of a request is equal to T’, where T’ =

t1’ + t2. Depend upon above assumptions we can derive the improvement ratio as that:

Improvement ratio =
21

21

' tt
tt

+
+

It is result in a small size file can be coped with quickly in given testing duration

and the transfer time t2 is smaller. Consequently, improvement ratio gets a greater

impact. Conversely, improvement ratio will be smaller in result of a large size file

makes the transfer time t2 longer.

Figure 16. Comparison of connection establishing rate.

However, while comparing selectivity content framework with aggregative

framework, the overall performance is impacted ideally as file size increases due to

saving symmetric cryptographic computing in transferring data (include header and

0.00

50.00

100.00

150.00

200.00

250.00

1
k

4
k

8
k

1
6
k

3
2
k

6
4
k

1
2
8
k

2
5
6
k

5
1
2
k

object size (bytes)

c
o
n
n
/
s

E

A

S

 39

payload). In other words, the improvement ratio is proportional to the size of file

transferred. The improvement for aggregative framework is relative slight than that of

essential framework. In fact, the improvement ratio of connection rate, regard to 1k is

about 2.6, 4k is 3.6, 8k is 4.2, 16k is 6.8, 32k is 10, 64k is 12.4, and 13.8 for 128k

respectively. These results are reasonable for increasing performance while only

simple effort is negotiated with the Null-encryption cipher suite methodology.

We can have the same conclusion for response time and throughput : the

improvement ratio of connection rate is very dependent on the file size, as shown in

Table 4 and Table 5, respectively. Generally, most of objects are between 100bytes

and 10kbytes in size [34]. The average size of most request pages is approximately

less than 10kbytes. In [35], it showed that the average size is about 9K. Therefore, it

makes sense that using aggregative framework can have remarkable improvement

over essential framework. On the other hand, selectivity content framework has a

positive impact of transferring the non-text representations such as image or audio

files.

Table 4(a). Throughput of essential framework.

Essential Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 0.92 3.15 5.88 11.03 21.34 37.62 60.56 79.14 83.08

40 0.95 3.28 5.93 11.18 21.48 37.77 60.54 79.11 83.02

60 0.97 3.29 5.99 11.32 21.63 37.75 60.58 79.07 82.95

80 1.13 3.56 6.23 11.34 21.69 37.79 60.59 79.12 82.91

100 1.09 3.54 6.20 11.35 21.71 37.80 60.56 79.01 82.87

 40

Table 4(b). Throughput of aggregative framework.

Aggregative Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 2.48 7.73 14.12 24.17 40.12 58.50 75.27 90.17 91.28

40 2.46 7.89 14.22 24.19 40.21 58.52 75.28 90.13 91.23

60 2.45 7.96 14.34 25.03 40.75 59.13 77.08 90.27 91.83

80 2.51 7.99 14.34 25.16 40.77 59.49 77.06 90.72 91.13

100 2.52 8.03 14.75 25.19 40.98 59.48 77.06 91.32 90.65

Table 4(c). Throughput of selectivity content framework.

Selectivity Content Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 2.42 7.87 14.50 25.38 43.02 63.72 85.42 91.14 92.95

40 2.46 7.91 14.58 25.46 43.04 64.69 85.43 91.18 91.91

60 2.51 8.05 14.63 25.81 43.45 65.29 85.36 92.68 91.55

80 2.57 7.99 14.69 26.00 43.53 65.60 85.52 92.23 91.83

100 2.59 8.26 14.91 26.41 43.82 65.78 86.87 92.23 90.29

Unfortunately, another observation from object sizes, the improvement degree

has apparently collapsed rapidly. It derives from the nature of SSL that its maximum

block size is 16KB. Suppose a 32 KB object is going to be transferred, the read

function needs to be called twice. Similarly, it needs four read function calls to

transfer a 64kb-size object. Therefore, the overhead of system calls results in slight

improvement for entire system because of the more interruptions that the operating

system has to handle (i.e., the system overhead increases). In our future work, we will

 41

modify the OpenSSL library to eliminate this restriction. The improvement for sizes

larger than 32KB would be significant.

 In addition, as one might expect, the aggregative framework can have a shorter

response time than that of essential framework. Their improvement ratios are close to

each other. Also, the performance is compared under 8k file size, as shown in Figure

17. The different number of clients is the key impact factor. As a result, with larger

number of client contribution, it results in heavy loading on proxy server. Therefore, it

is proportional to response time. However, the response time, as clearly shown, is

growing quickly while the number of clients increasing in the essential framework.

On the contrary, the response time is growing relatively slow while the number of

clients increasing in the aggregative framework and selectivity content framework.

Table 5(a). Response time of essential framework

Essential Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 0.223 0.230 0.235 0.245 0.251 0.284 0.348 0.530 1.013

40 0.440 0.466 0.478 0.492 0.504 0.561 0.689 1.003 2.132

60 0.636 0.699 0.702 0.712 0.743 0.855 0.929 1.512 3.195

80 0.820 0.875 0.914 0.953 0.997 1.139 1.260 2.096 4.371

100 1.021 1.146 1.169 1.203 1.214 1.413 1.518 2.689 5.418

 42

Table 5(b). Response time of aggregative framework

Table 5(c). Response time of selectivity content framework

Selectivity Content Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 0.087 0.089 0.093 0.105 0.123 0.165 0.246 0.459 0.897

40 0.160 0.169 0.193 0.210 0.251 0.349 0.531 0.911 1.822

60 0.251 0.261 0.278 0.309 0.364 0.482 0.726 1.365 2.679

80 0.332 0.351 0.372 0.401 0.504 0.717 0.973 1.793 3.694

100 0.402 0.423 0.453 0.502 0.601 0.793 1.198 2.250 4.470

Aggregative Framework

 1k 4k 8k 16k 32k 64k 128k 256k 512k

20 0.087 0.090 0.096 0.110 0.132 0.180 0.279 0.464 0.912

40 0.163 0.172 0.197 0.219 0.262 0.364 0.552 0.926 1.861

60 0.252 0.263 0.282 0.318 0.388 0.532 0.813 1.388 2.681

80 0.339 0.358 0.379 0.415 0.536 0.738 1.012 1.814 3.701

100 0.412 0.434 0.458 0.527 0.641 0.880 1.348 2.271 4.453

 43

0.000

0.200

0.400

0.600

0.800

1.000

1.200

20 40 60 80 100

the number of connections

s
e
c
o
n
d
s

E

A

S

Figure 17. Comparison of the response time.

